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Abstract

The source of black hole entropy within causal set theory is investigated. It is proposed that the
number of causal set molecules crossing a black hole’s event horizon corresponds to its entropy.
Link molecules crossing the horizon are first counted in 2d, by considering and developing
previous analytical calculations. Computational analysis is then performed in 3d and finds
that links cannot contribute to black hole entropy as they are not local to the horizon. So
called z-triplet molecules are also investigated, both analytically in 2d and computationally in
3d. These are shown to be local in both cases, and the number of them scales correctly with
the area of the horizon, providing promise for the proposal.
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Nomenclature

Relativity/Causal Sets

nd n dimensional spacetime.

X + TD Spacetime with X spacelike dimensions and T timelike dimensions.

J+(x) The causal future of x.

J−(x) The causal past of x.

∈ x∈A implies that x is the future-most element in A if A is a causal set, or
the future-most element in a sprinkling on A if A is a spacetime region.

∈ x∈A implies that x is the past-most element in A if A is a causal set, or
the past-most element in a sprinkling on A if A is a spacetime region.

Timelike path The path a massive particle follows in spacetime. All points on the path
are causally related, i.e. timelike.

Null geodesic The path a massless particle, e.g. photon, follows in spacetime.

Null hypersurface A surface formed from all null geodesics emanating from a specific point.

≺ x ≺ y implies x causally precedes y.

≺∗ x ≺∗ y implies x and y are linked.

lf Discreteness length.

ρ Discreteness (sprinkling) density, ρ = l−nf .

Mathematical Symbols

:= Equals by definition.

∈ x ∈ A implies x is an element of A.

∀ For all.

∩ A ∩ B equals all points/elements in both A and B (the intersection of A
and B).

Other

Po(k;λ) The Poisson distribution. The probability of k events occurring given a
mean number of events λ.

Physical Constants
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G Newton’s gravitational constant.

c Speed of light.

~ Reduced Planck’s constant.

Natural units G = c = ~ = 1 will be used unless otherwise specified.
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Chapter 1

Introduction

Einstein’s general theory of relativity (GR) [1] is a classical theory of gravity that has made
innumerable contributions to black hole physics over the past century [2]. Notably, work by
Stephen Hawking and Jacob Bekenstein in the 1970s showed that a black hole has an entropy
that is directly related to its event horizon [3, 4], however the physical source of this entropy
is not understood. In thermodynamics, the entropy of a system is related to the disorder of
molecules within it, but if a black hole is truly black what could the analogue of these molecules
be? The answer is thought to arise from quantum mechanics and thus a quantum theory of
gravity is eagerly sought.

There is currently no scientific consensus on the correct quantum theory of gravity, however
one particularly promising approach is causal set theory (CST) [5,6]. Pioneered by Rafael Sorkin
in the late 1970s, one of CST’s key hypotheses is that spacetime is fundamentally discrete. Just
like matter, spacetime is thought to be made of atoms, which in turn form molecules. This led
Sorkin to propose that black hole entropy is related to the number of spacetime molecules in
the vicinity of the event horizon, the horizon molecules [7].

The objective of this work is to count different types of spacetime molecule, lying in the
vicinity of the event horizon, to determine the entropy they produce. This will be compared
with a well established theoretical formula for the entropy to critically test Sorkin’s proposal.
This work will start by analysing the simplest type of molecule in 1 + 1D, before then testing
different molecules and investigating higher dimensions, with the ultimate aim of finding viable
horizon molecules.

Although we currently lack the experimental capabilities of measuring an astrophysical black
hole’s entropy, condensed matter physicists are able to create black-hole-like systems in their
laboratories [8–13]. For example, using Bose-Einstein condensates, one can make a sonic black
hole within which phonons cannot escape. This enables experimental study of the physical
mechanisms behind black hole entropy, hence obtaining a theoretical understanding is a timely
endeavour.

The exact structure of this report is as follows. Chapter 2 begins by introducing black holes
and summarising how they arise in GR. The notion of black hole entropy is introduced, together
with a heuristic understanding of its relation to both the event horizon and spacetime. Chapter
3 then introduces causal set theory, explaining its motivations and describing its mathematical
structure. Moreover, spacetime molecules are introduced, together with an analytical method of
counting them. Chapter 4 presents the proposal made by Sorkin, that the entropy of a black hole
is (approximately) equal to the number of spacetime molecules lying across its event horizon.
This is critically discussed, with the establishment of mathematical criteria that the number
of molecules must satisfy for the proposal to be viable. Following the work of Dou [14, 15]
and Marr [16], whilst adding mathematical detail, chapter 5 provides an analytical test of the
proposal for a class of molecules known as links, in 1 + 1D. It is found that the most simple
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type of link does not satisfy the proposal, however alternative constrained links are found that
do. In order to test the proposal in higher dimensions a computational approach is required
due to analytical intractability. Chapter 6 describes an original algorithm that can be used
to count link molecules in arbitrary many dimensions, detailing both its efficient features and
inaccuracies. This algorithm is then implemented and tested against the previously obtained
1 + 1D results, showing good agreement. It is then used to show that all types of link do
not satisfy the criteria of the proposal in 2 + 1D, thus motivating the search for a different
molecule that does satisfy the criteria. Chapter 7 introduces triplet molecules, notably so called
z-triplets. Following the analytical work of Marr [16], these are shown to satisfy the criteria of
the proposal in 1 + 1D. Computational analysis of z-triplets is then performed, showing them
to be consistent with the proposal in 2 + 1D, providing great promise that z-triplets could be
molecules that contribute to black hole entropy. Finally, chapter 9 summarises the conclusions
of this project and identifies areas for future research.
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Chapter 2

Black Holes

Black holes arise from the Schwarzschild solution to the Einstein field equations of GR. This
chapter outlines the Schwarzschild solution, as well as black hole thermodynamics.

2.1 The Schwarzschild Solution

The Schwarzschild solution of GR describes the spacetime geometry outside a sphere of mass
M [17]. It is spherically symmetric and displays interesting behaviour at a radial distance
r = 2M =: RS from the mass, where RS is known as the Schwarzschild radius. A plot of
the trajectories of photons within this spacetime is shown in figure 2.1. All ingoing photons
pass straight through the line r = RS, suggesting nothing physical happens there. However,
all photons within the r < RS region are directed towards r = 0, therefore any matter within
r < RS is trapped there forever. This region is known as a black hole and the boundary r = RS

is the event horizon, as no event inside the horizon can affect an event outside [18]. The event
horizon is not a physical entity, just a mathematical point of no return.

Also, the Schwarzschild solution contains a singularity in the curvature of spacetime at
r = 0. This is the ‘centre’ of a black hole, where all matter within the horizon will inevitably
reach [19].

Figure 2.1: A spacetime diagram of a Schwarzschild black hole, plotting radial distance r against
time t∗. Some radial null geodesics (photon trajectories) and lightcones are shown. The event
horizon is the dashed line at r = 2M . The curvature singularity is the red line at r = 0. [20]
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2.2 Black Hole Thermodynamics

The first two laws of black hole mechanics [21], established by Carter, Hawking, and Bardeen
are

(i) dE =
κ

8π
dA+ dW,

(ii)
dA

dt
≥ 0,

(2.1)

where E is the energy of the black hole, κ the surface gravity, A the horizon area, W the work
done on the black hole (due to its charge or spin) and t is time. In words, the first law states
that the change of energy of a black hole is caused by either a change of its size or work done
on it. The second law states that the area of the horizon cannot decrease.

The first two laws of thermodynamics are

(i) dE = TdS + dW,

(ii)
dS

dt
≥ 0,

(2.2)

where T is temperature, S is entropy and all other symbols have the same meaning as above [22].
Thus both sets of laws have similar forms, with A in some sense playing the same role as S.

By arguing that a black hole must both satisfy the first law of thermodynamics whilst also
ensuring that the entropy of the entire universe cannot decrease, Bekenstein reasoned that a
black hole must have an entropy proportional to its area [3, 23]. Hawking then found [4, 24]
the proportionality constant to be 1/4, where A is measured in Planck units, yielding the
Bekenstein-Hawking entropy SBH of a black hole

SBH =
1

4

A

l2P
, (2.3)

where lP is the Planck length, equal to

lP =

√
G~
c3
≈ 1.616229(38)× 10−35 m (2.4)

in SI units [25]. So black hole entropy is related to quantum mechanics (because of ~) and
gravity (because of G), within general relativity (because of c), making it an invaluable physical
property to investigate in order to understand quantum gravity [26,27].

2.3 What is Black Hole Entropy?

The Bekenstein-Hawking entropy’s scaling with the horizon area suggests it is physically related
to the horizon. Schematically, the horizon of a black hole can be thought to be made of tiles
of area 4l2P , where each tile represents one unit of entropy, as pictured in figure 2.2 [28]. Thus,
the total entropy equals the number of these horizon tiles, each of which can be interpreted as
a degrees of freedom (dof) of the horizon [7].

As discussed in section 2.1, the event horizon is just a boundary in spacetime, there is
nothing physically there apart from spacetime itself. This suggests that horizon dofs must be
dofs of spacetime. In order to motivate the notion of spacetime dofs, consider the entropy of
a black hole due to quantum entanglement [30]. The entanglement entropy of a black hole
encapsulates the hidden information inside the horizon that is entangled with information
outside. Performing the quantum field theory (QFT) calculation on a black hole background,
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within the continuum of GR, yields an infinite result for the entropy, contradicting SBH in
equation (2.3). However, performing the same calculation with a short distance cutoff l applied
to the quantum modes yields a finite result for the entanglement entropy

SE = k
A

l2
, (2.5)

where k is an undetermined constant of order 1 [31]. Thus, if spacetime where fundamentally
discrete, with fundamental discreteness length lf , the entanglement entropy can be written as

SE = k
A

l2f
≡ Nf , (2.6)

where Nf can be thought of as the number of fundamental spacetime dofs belonging to the
horizon [7]. By equating SBH from equation (2.3) with SE one finds

1

4

A

l2P
= k

A

l2f
(2.7)(

lf
lP

)2

= 4k. (2.8)

Therefore calculating k within a theory of quantum gravity will determine the value of lf , which
in turn could provide a natural explanation for why constants of nature such as G and ~ have
the values that they do.

A question that remains is what do spacetime dofs physically represent? The remainder of
this report will investigate an answer proposed within causal set theory.

Figure 2.2: Tiled event horizon. Each (blue) entropy tile corresponds to one unit of entropy.
Each unit of entropy can be interpreted as one bit of information (i.e. 1 dof), hence the 0 or 1
on each entropy tile. [29]
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Chapter 3

Causal Set Theory

During the 1970-80s, the notion of discrete spacetime, together with the importance of causal
order, was hypothesized independently by various physicists [5, 32, 33] and amalgamated with
the creation of a theory of quantum gravity known as causal set theory (CST). A key motivation
for discrete spacetime is its prevention of many divergent physical quantities, including QFT
amplitudes and the entanglement entropy of a black hole (as discussed in section 2.3) [34].

3.1 Causal Structure

Causal order is a key part of GR. Every event in spacetime has a causal future and past; every
event can only influence, or be influenced by, specific other events. For two spacetime points,
x and y, the order relation x ≤ y implies that y is in the causal future of x [35]. Every point x
has a set of points in its causal future J+(x) and its causal past J−(x), as shown in figure 3.1.

Figure 3.1: The causal past and future of x are all the points within the past and future
lightcones of x respectively. Note, y ∈ J+(x).

Work in global causal analysis [36–41] has suggested that knowing the causal structure of
a spacetime, that is knowing the order relations between every point, is enough to determine
all of the spacetime’s geometrical properties if one also had independent knowledge of the
volume element. If spacetime were discrete, the volume of a region of spacetime is given by the
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number of discrete elements corresponding to that region [42]. Volume information is encoded
in the discretum and thus, if spacetime were discrete, causal order alone entirely determines
the geometry of spacetime. In the words of Rafael Sorkin “Number + Order = Geometry” [43].
This unification provided by causal structure is a major motivation to treat it as fundamental
within a discrete theory.

3.2 Mathematics of CST

A causal set (causet) is a locally finite partially ordered set [44]. Mathematically, it is a set C
together with a binary relation � satisfying the following axioms:

(i) x � x,∀x (reflexivity);

(ii) x � y � z ⇒ x � z, ∀ x, y, z ∈ C (transitivity);

(iii) x � y and y � x⇒ x = y,∀ x, y ∈ C (acyclicity);

(iv) |{y ∈ C|x � y � z}| <∞, ∀ x, z ∈ C (local finiteness).

Furthermore, x ≺ y signifies that x � y and x 6= y. In words, x ≺ y means “x causally precedes
y”. Axioms (ii) and (iii) imply that the set is ordered. Axiom (iv) ensures discreteness [35,45].

Figure 3.2: A Hasse diagram. Nodes represent causet elements and edges (lines) represent links.
Links are drawn between nearest neighbours, thus, although x ≺ z, there is no edge directly
between x and z. Time increases upwards. [46]

Figure 3.2 depicts a visualisation of a causet, known as a Hasse diagram [46]. This is akin
to an upside down family tree, following the convention that the time axis points upwards in
relativity. Each node represents an element and the edges represent causal relations between
nearest neighbours. A nearest neighbour relation is known as a link and is denoted by a ≺∗
symbol. Thus, figure 3.2 depicts a causet C = {x, y, z, ...}, where x ≺∗ y ≺∗ z. Note x ≺ z
is not a link, because x and z are not nearest neighbours as y is in between. The diagram
contains no notion of length – a causet is simply a set of elements with an order relation [45].

An element in a causet is minimal if there are no elements in the causet that are in its past.
In figure 3.2, x is a minimal element of C. This is written as x∈C. Similarly a maximal element
contains no elements in its future. In the figure, z is maximal in C, denoted z∈C [16].

3.3 Continuum Correspondence

According to CST, the continuum does not exist. It is merely an approximation to a causet
at scales much larger than the discreteness scale. If a continuum spacetime is a good approx-
imation to a causet, then the causet will faithfully embed into the spacetime. Research is still
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being performed to find properties of the continuum from an arbitrary causet [47–59], how-
ever a method of working backwards is known. Given a continuum spacetime, one can find a
causet which faithfully embeds into it by performing a sprinkling [46], in which points from the
continuum are randomly selected according to a Poisson process [60].

The Poisson process works as follows. Given an arbitrary region of spacetime R of volume
V , the number of elements N in a faithfully embedded causet is a Poisson-distributed random
variable [61]. Thus

Prob(N = k) = Po(k; ρV ) :=
(ρV )ke−ρV

k!
, (3.1)

where ρ := l−nf is the density of sprinkling and n is the dimensionality of R. The N elements
each correspond to a point in R and are distributed uniformly (sprinkled) throughout R. The
causal relations can then be determined using the causal structure of R. A Poisson process
both respects Lorentz invariance and ensures that, on average, N ∝ V so that “Number +
Order = Geometry” [46]. Figure 3.3 illustrates sprinkling in the case of flat 2d spacetime.

Figure 3.3: An illustration of sprinkling. (a) depicts a flat 2d continuum spacetime and signifies
an arbitrary point x with its causal past and future (grey). (b) shows a set of sprinkled points
(of which x is one), whose number and position were determined randomly according to a
Poisson process. (c) depicts the causet (as a Hasse diagram) obtained from the sprinkling; each
causet element corresponds to a sprinkled point and the links are determined by considering
the causal order of each sprinkled point. This causet faithfully embeds into flat spacetime. [62]

3.4 Molecules and Counting Links

Figure 3.4 shows examples of two types of causet molecule: a link and a triplet. A key concept
throughout this work will be counting molecules obtained through sprinkling. Because sprin-
kling is a random process, the quantity of interest is the average number of molecules over all
possible sprinklings <NM>. This section will specifically address the average number of links
<NL>.

In order to calculate <NL>, the probability that a sprinkled point exists at a certain place
in the continuum must be calculated. Using equation (3.1), the probability that one sprinkled
point exists in a flat1 n-dimensional volume element dnx is

Po(1; ρdnx) = ρdnx. (3.2)

1This can be generalise to an arbitrary geometry, but this work only considers flat spacetime.
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Figure 3.4: A link (top left) and triplet (top right), where x, y and z are sprinkled causet
elements. Links are drawn in orange. The bottom pictures show the future lightcone of x and
the past lightcone of y in blue and red respectively. The causal interval of x and y (yellow)
contains no sprinkled points on the left and one sprinkled point (z) on the right.

Consider two sprinkled points x and y such that x ∈ X and y ∈ Y , where X and Y are
arbitrary regions within the sprinkled spacetime. If x ≺∗ y, there must be no other sprinkled
points within J+(x)∩ J−(y), known as the causal interval of x and y, as shown in figure 3.4. If
there were a point in this region, x and y would no longer be linked as they would no longer be
nearest neighbours. Therefore, the probability that x and y are linked equals the probability
that J+(x) ∩ J−(y) is empty. Using equation (3.1), this is given by

Po[0; ρVL(x, y)] = e−ρVL(x,y), (3.3)

where VL(x, y) is the volume of J+(x) ∩ J−(y).
Therefore the probability of there being a point x in dnx and another point y in dny and

that x-y is a link, is given by

P (x ≺∗ y) := Po(1; ρdnx) Po(1; ρdny) Po[0; ρVL(x, y)] = ρdnx ρdny e−ρVL(x,y). (3.4)

The presence or non-presence of a link is a binary outcome, thus <NL> is given by a sum
of P (x ≺∗ y) over all link possibilities. Specifically, in the infinitesimal volume element limit,
the expected number of links x ≺∗ y between X and Y is given by integrating P (x ≺∗ y)
throughout X and Y , whilst ensuring that y is in the future of x. Therefore,

<NL,n> =
∑

x-y pairs

P (x ≺∗ y)→
∫
X
ρdnx

∫
Y∩J+(x)

ρdny e−ρVL(x,y), (3.5)

where the subscript n explicitly shows dimensional dependence. The exponent of the exponen-
tial is a key property of this equation. For a given ρ, the smaller VL(x, y), the more likely x and
y are linked. If VL(x, y) ≈ 0 for a large set of x-y pairs, then <NL> will be large [63]. Figure
3.5 shows a sketch of the link counting setup in 2d.
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Figure 3.5: Illustration of link counting in a 2d sprinkling. The average number of links between
regions X and Y is given by considering the probability of the presence of linked pairs between
each infinitesimal volume element pair (d2x and d2y). The yellow rectangle is the causal interval
of the volume element pair.
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Chapter 4

Black Hole Entropy in Causal Set
Theory

Sprinkling can be performed on any spacetime, including one containing a black hole. In such
a sprinkling, causet molecules will intersect the event horizon. Sorkin proposed that, to a first
approximation, the horizon dofs are causet molecules intersecting the horizon [14,15]. This will
now be discussed in the context of the event horizon of a collapsing shell of matter.

4.1 A Collapsing Shell of Matter

O

H H

HH

RS−RS

t

x

collapsing
shellco

lla
ps
in
g
sh
ell

v=bu=b

Figure 4.1: A 1+1D spacetime diagram of a collapsing shell in Cartesian coordinates (t, x) with
origin O. The thick black line at lightcone coordinate b is the collapsing shell. The horizon H
comprises of the thin solid lines. The zigzagged line represents the r = 0 curvature singularity.
A possible particle trajectory is drawn in magenta, illustrating that, even during the collapse,
an event horizon exists within which no matter can ever escape.

One way a black hole can form is via the collapse of a massive object, such as a star, which
can be modelled as a spherical shell of matter [15]. Consider a spherical shell of matter in a
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vacuum, collapsing over time. Working in Cartesian coordinates (t, x, y, z), this corresponds to
a spherical shell in the space described by the x, y and z coordinates, decreasing in radius as t
increases. Therefore, the (t, x) plane contains two antipodal points on the shell (at y = z = 0)
moving towards each other over time, as pictured in figure 4.1.

Using lightcone coordinates (v, u), defined as

v :=
t+ x√

2
, u :=

t− x√
2
, (4.1)

the trajectory of the collapsing shell is chosen to be along v = b for x > 0 and u = b for x < 0,
where b is a constant. These are straight lines of gradient ±1 in the (t, x) plane.

It can be seen in figure 4.1 that there are two parts to the horizon. Firstly, a horizon exists
during the collapse; whilst the shell is larger than RS, a ‘V-shaped’ horizon can be seen to exist
inside the shell. Moreover, after the shell has collapsed, the horizon has a constant value of
r = |x| = RS; at this point a static black hole has formed, thus this looks similar to figure 2.1.
The spacetime inside the shell is flat, whereas outside is curved, therefore analytical calculations
concerning the horizon inside the shell are significantly simpler [14,15]. Hence it is this horizon
that will be studied throughout this work.

O

i+

i0

J +

H

i+

i0
H

J +

i−

J −J −
vu

singularity, r=0

collapsing
shellco

lla
ps
in
g
sh
ell

v=0

v=b

u=0

u=b

Figure 4.2: Penrose diagram of a collapsing shell at lightcone coordinate b with horizon H.
Lightcone coordinate axes have been included to show the analogy with figure 4.1 inside the
shell. All other symbols accord with Penrose diagram conventions [18]. The vertices i± represent
lightcone coordinates (±∞,±∞). The right edge (between i− and i0) represents u = −∞, and
the opposite, left, edge represents v = −∞; both of these are denoted by J −.

This collapsing shell can be depicted as a Penrose diagram [18], which reduces infinite
spacetime to a finite size picture. In a Penrose diagram, lightcones are always straight lines at
45◦ to the vertical, regardless of the spacetime’s curvature. Hence figure 4.2 differs from figure
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4.1 in the fact the horizon is now always at 45◦ to the vertical and the singularity is now a
horizontal line. Because the flat interior of the shell looks the same in both figures, one can
analogously think in terms of lightcone coordinates, i.e. (v, u) coordinates with origin O, inside
the shell.

4.2 Entropy Equals Number of Horizon Molecules

Entropy is a quantity that is calculated at a given time, therefore a null hypersurface, denoted
Σ, is introduced to the Penrose diagram at lightcone coordinate a, as in figure 4.3. Note, in the
(t, x) plane, a null hypersurface is two straight lines of gradient ±1. The entropy of the horizon
H will be calculated at the time at which Σ intersects H (denoted H ∩Σ). It is proposed that

the entropy of a black hole at time signified by Σ is, to first order, equal to the
number of molecules that intersect both H and Σ whilst remaining local to H ∩Σ.

The regions of locality are illustrated in figure 4.3 by green circles; molecules must lie within a
green circle to be local. This proposal is akin to thermodynamics, where the entropy of a box
of gas is proportional to the number of molecules in the box [64].
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Figure 4.3: Penrose diagram of collapsing shell (figure 4.2). Two dashed lines representing Σ
are added at lightcone coordinate a. X is the blue region and Y the red region. Green circles
illustrate where molecules must lie in order to be local. A local link x ≺∗ y is shown. In this
2d picture, H ∩ Σ corresponds to the two points at which H intersects Σ (a 0-sphere). RH∩Σ,
the radius of H ∩ Σ, is the length of the magenta line.

To calculate the expected number of links <NL,n> using equation (3.5), the regions X and
Y must be specified. Note, although equation (3.5) applies to links, a similar integral applies
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to all molecules we will consider. To ensure that molecules cross both H and Σ, we choose

X := J−(H) ∩ J−(Σ),

Y := J+(H) ∩ J+(Σ) ∩ J−(shell).
(4.2)

This is depicted in figure 4.3. Because entropy is a physical property of a black hole, it must be
defined covariantly, which is ensured by defining X and Y solely in terms of causal structure.

4.2.1 The Macroscopic Regime

This work considers the horizon within the shell only and will therefore take a� b, such that
the shell is far away from the time at which entropy is calculated. Furthermore, a macroscopic
black hole, far larger than the discreteness scale, will be considered by taking lf � a. Together
these define the macroscopic regime lf � a � b, or equivalently, 1 � ρan � ρbn, where n is
the dimensionality of spacetime. To investigate the macroscopic regime one can either fix ρ
and make a and b sufficiently large, or alternatively fix a and b whilst increasing ρ [15].

4.2.2 Criteria for Agreement with SE

Mathematically, the proposal says that

<NM,4> ' SE (4.3)

= k
A2

l2f
, (4.4)

where equation (2.6) was used for SE and A2 is the area of H ∩ Σ (the subscript 2 is used to
signify this is the area of a 2-sphere [65], i.e. a spherical shell). Note that this proposal does not
specify which molecules M correspond to the entropy. Therefore this work investigates which,
if any, molecules do satisfy it and are thus horizon molecules.

Calculations in 4d are difficult, therefore, as a first attempt to test the proposal, this work
will perform calculations in lower dimensions. An n-dimensional analogue of equation (4.4) is

<NM,n> ' kn
An−2

ln−2
f

, (4.5)

where <NM,n> is the number of molecules in a sprinkling on an n-dimensional cut of the 4d
spacetime, kn is a dimension dependant constant of order unity and An−2 is the area of the
(n− 2)-sphere [65] corresponding to H ∩ Σ.

A 3d slice of the shell at constant spherical polar angle θ contains a circular ring (a 1-sphere)
of the shell collapsing over time. This slice corresponds to fully rotating the Penrose diagram
in figure 4.3 about the dotted vertical. Therefore A1 = 2πRH∩Σ is the circumference of the
circular ring, where RH∩Σ is the radius of H ∩ Σ. Using this, together with lf = ρ−1/n, gives

<NM,3> ' k3 2πRH∩Σ ρ1/3. (4.6)

It can be seen in figure 4.3 that because H ∩ Σ is a distance a from the origin, RH∩Σ = a/
√

2.
Therefore,

<NM,3> ' k3

√
2πa ρ1/3. (4.7)

Alternatively, slicing on the (t, x) plane gives a 2d slice which must obey

<NM,2> ' k2
A0

l0f
= 2k2 ∼ 1. (4.8)
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Note A0 is the area of a 0-sphere [65], which is two points and therefore equals 2. This slice is
what the Penrose diagram depicts.

Note the use of ‘'’, implying these must be the leading order contributions in the macro-
scopic regime.

4.2.3 Criterion for Locality
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Figure 4.4: Penrose diagram of collapsing shell (figure 4.3). XL, XC , XR, YL, YC and YR are
shown between the dashed grey lines. Also, note the mirror symmetry in the dotted vertical
line.

As shown in figure 4.4, X can be split into 3 subregions, XR, XL and XC , where the subscripts
mean right, left and central, respectively. Y can be split similarly. Thus, <NL,n> can be written

<NL,n> =

(∫
XR

+

∫
XL

+

∫
XC

)
ρ dnx

(∫
YR∩J+(x)

+

∫
YL∩J+(x)

+

∫
YC∩J+(x)

)
ρ dny e−ρVL(x,y).

(4.9)
This can be expanded into nine integrals, however, if links are local they will not reach the
central regions, or extend from the left to the right half of spacetime. The green circles only con-
nect XR to YR and XL to YL, thus these two contributions alone include all local contributions.
Hence, a necessary but not sufficient condition for locality is

<NL,n> '
∫
XR

ρ dnx

∫
YR∩J+(x)

ρ dny e−ρVL(x,y) +

∫
XL

ρ dnx

∫
YL∩J+(x)

ρ dny e−ρVL(x,y), (4.10)

with the seven other integrals contributing negligibly. Note this is not sufficient because the
green circles are smaller than XR and all other subregions.
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Because the Penrose diagram (see figure 4.4) is symmetric across the dotted vertical, there
is an R ↔ L symmetry, thus the above two terms are equal. Moreover, if x ∈ XR then
YR ∩ J+(x) = YR, so the locality condition becomes

<NL,n> ' 2

∫
XR

ρ dnx

∫
YR
ρ dny e−ρVL(x,y) =: 2 <NRR

L,n>, (4.11)

where <NRR
L,n> is the contribution between XR and YR, the right-right contribution.

The symmetry discussed above is related to spacetime, not the molecule, therefore

<NM,n> ' 2

∫
XR

ρ dnx

∫
YR
ρ dny PM(x, y) =: 2 <NRR

M,n> (4.12)

is the locality condition for any molecule M , provided the appropriate integrand PM(x, y) is
inserted.

4.2.4 Symmetry

If molecules are local there is an X ↔ Y symmetry, although this is an approximate symmetry
as it only applies in the macroscopic regime. Figure 4.5 shows the axis of this mirror symmetry,
which arises when Y is sufficiently large that it is effectively the same size as X as far as local
molecules are concerned.
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Figure 4.5: Penrose diagram of null collapsing shell (figure 4.3) showing the horizontal axis of
approximate X ↔ Y symmetry.
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Chapter 5

Counting Links in 1 + 1D

The simplest type of molecule is a link, this will be the first molecule to be investigated. A link
crossing the horizon can be thought of as a flow of information from the exterior to the interior
of the horizon, fitting in well with the notion of entanglement entropy. We will now refer to
the previously defined link as a plain link for reasons that will become clear.

5.1 The Right-Right Contribution

5.1.1 Plain Links

To start, consider <NRR
L,2 > as defined in equation (4.11). Figure 5.1 shows both integration

regions, XR and YR, together with VL(x, y). By considering the lightcone coordinate annotations
on the Penrose diagram, it can be seen that XR extends from u = −∞ to u = 0 and v = 0 to
v = a, while YR extends from u = 0 to u = a and v = a to v = b. These give the limits of
integration. Also, by considering the area of the yellow rectangle, it can be seen that

VL(x, y) = (uy − ux)(vy − vx), (5.1)

where ux is the u coordinate of the point x (and similar). Thus integrating one by one gives

<NRR
L,2> =

∫
XR

ρ d2x

∫
YR
ρ d2y e−ρVL(x,y)

= ρ2

∫ b

a

dvy

∫ a

0

dvx

∫ 0

−∞
dux

∫ a

0

duy e
−ρ(uy−ux)(vy−vx)

= ρ

∫ b

a

dvy

∫ a

0

dvx

∫ 0

−∞
dux

eρux(vy−vx)(1− e−ρa(vy−vx))

vy − vx

=

∫ b

a

dvy

∫ a

0

dvx
1− e−aρ(vy−vx)

(vy − vx)2

=

∫ b

a

dvy
1

vy(vy − a)

{
a+ e−ρavy(−a+ vy − vyeρa

2

)

ρavy

[
vy Ei(−ρavy)− aEi(−ρavy)

− vy Ei
(
−ρa(vy − a)

)
+ aEi

(
−ρa(vy − a)

)]}
=

∫ b

a

dvy

{
a

vy(vy − a)
+
e−ρavy

vy
− e−ρa(vy−a)

vy − a
+ ρa

[
Ei(−ρavy)− Ei

(
−ρa(vy − a)

)]}
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= 1 + γ + ln[ρa2]− ln[ρab] + ln[ρa(b− a)]− e−ρa2 + e−ρab − e−ρa(b−a)

− (1 + ρa2) Ei[−ρa2] + (1 + ρab) Ei[−ρab]− (1 + ρa(b− a)) Ei[−ρa(b− a)],

where Ei(x) is the exponential integral [66] and γ is the Euler-Mascheroni constant [67].
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Figure 5.1: Penrose diagram (figure 4.4) illustration for <NRR
L,2> calculation, including causal

interval (yellow).

The asymptotic expansion [68] of Ei(x),

Ei(x) ∼ ex

x

∞∑
k=0

k!

xk
, (5.2)

establishes that terms of the form (1 + x) Ei(−x) are exponentially suppressed for large x. To
investigate the leading order behaviour in the macroscopic regime, exponentially suppressed
terms can be dropped, giving

<NRR
L,2> ' 1 + γ + ln[ρa2]− ln[ρab] + ln[ρa(b− a)] (5.3)

= 1 + γ + ln

[
ρa2

(
1− a

b

)]
(5.4)

= 1 + γ + ln(ρa2)−O
(
a

b

)
(5.5)

' ln(ρa2)−O
(
a

b

)
. (5.6)

Note that the Maclaurin expansion of ln(1 + x) was used in the penultimate step.
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Thus the number of plain links is unbounded with a (and ρ). Increasing a corresponds to
increasing the size of XR and, if b� a, YR. Therefore this result says that the number of links
will increase indefinitely as XR and YR are made larger, which is non-local behaviour. Moreover,
this does not satisfy equation (4.8), suggesting plain links cannot be horizon molecules. This is
heuristically understandable because VL(x, y) ' 0 whenever both x and y lie close to either H
or Σ, regardless of how far away they are from H ∩Σ. This can be pictured by moving x and y
in figure 5.1 and considering the change in size of the yellow rectangle. Therefore the integrand
in equation (4.11), which is the probability that x and y are linked, will be large far away from
H ∩ Σ. Note that this conclusion was stated, without mathematical proof, by Dou in [14].

5.1.2 Constraining the Links

Given the failure of counting all links between XR and YR, a way of modifying the calculation
to only consider links that lie locally to H ∩Σ is required. We cannot simply integrate over the
green circles of figure 4.3, as the green circles will change shape during a Lorentz transformation
meaning a non-covariant definition of entropy. An alternative, covariant, constraint applied by
Dou is to restrict y∈J+(H) [14, 15], which means only count links whose y is minimal in the
future of the horizon, forcing y to lie close to H. These links will be referred to as y-links.

This constraint requires that J+(H)∩ J−(y) be empty, in addition to the causal interval of
x and y required for plain links. Therefore a different integrand is required for this calculation,
where VL(x, y) is replaced by the volume that must be empty in order to ensure the above. The
empty volume for y-links is shown in figure 5.2 and it can be seen that as y moves away from
H ∩ Σthe empty volume will become larger than for plain links, in turn suppressing non-local
links. By calculating the areas of the yellow rectangles in figure 5.2, the new empty volume is

VLy(x, y) = VL(x, y) + vxuy

= uxvx + uyvy − uxvy.
(5.7)

Thus the right-right contribution for y-links is given by

<NRR
Ly,2> =

∫
XR

ρ d2x

∫
YR
ρ d2y e−ρVLy(x,y)

= ρ2

∫ b

a

dvy

∫ a

0

duy

∫ a

0

dvx

∫ 0

−∞
dux e

−ρ(uxvx+uyvy−uxvy)

= ρ

∫ b

a

dvy

∫ a

0

duy

∫ a

0

dvx
e−ρuyvy

vy − vx

= ρ

∫ b

a

dvy

∫ a

0

duy e
−ρuyvy ln

(
vy

vy − a

)
=

∫ b

a

dvy
1

vy

(
1− e−ρavy

)
ln

(
vy

vy − a

)
.

(5.8)

Given vy ≥ a, then e−ρavy ≤ e−ρa
2 � 1 in the macroscopic regime, so the exponential in

parentheses can be dropped for a highest order contribution calculation. This gives

<NRR
Ly,2> ' −

∫ b

a

dvy
1

vy
ln

(
1− a

vy

)
(5.9)

= Li2(1)− Li2

(
a

b

)
(5.10)
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=
π2

6
− Li2

(
a

b

)
(5.11)

=
π2

6
−O

(
a

b

)
(5.12)

to leading order in corrections, where Li2(x) is the dilogarithm of x [69]. In the macroscopic
regime this gives a contribution of order unity, hence if links are local and<NLy,2> ' 2 <NRR

Ly,2>,
according to equation (4.11), then equation (4.8) is satisfied with k2 = π2/6. This is the
conclusion of Dou and Marr in [14–16] without successful mathematical consideration of non-
local contributions, which will now be analysed.
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Figure 5.2: Penrose diagram (figure 4.4) illustration for <NRR
Ly,2 > calculation, with empty

volume shown in yellow.

5.2 The Non-Local Contributions

Although not detailed in this report, it can be shown that the non-local contribution for y-links
as currently defined is not negligible. For example, y-links between XC and YR can be shown
to scale as ln b/a in the macroscopic regime.

The reason for this is that although y has been constrained, x has not. Locality can be
ensured by constraining x∈X , as this requires there to be no points in X that are in the future
of x, forcing x to lie towards the top of the X region. Note that this is not as strict as the
constraint on Y , but sufficient to ensure locality. This constraint has no effect on the right-right
contribution and will thus be absorbed into our definition of the links previously mentioned in
this chapter.

This was stated without proof by Dou and Marr, however we have verified it by calculating
all terms in equation (4.9). To illustrate one such calculation, consider the expected number of
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y-links between XL and YR, denoted <NLR
Ly,2>. The Penrose diagram highlighting the relevant

regions for this calculation is shown in figure 5.3. It can be seen that both constraints, x∈X
and y∈J+(H), add to the causal interval in the empty volume, which is now

V LR
Ly (x, y) = VL(x, y) + uxvy − (a− uy)vx

= (uy − ux)(vy − vx) + uxvy − (a− uy)vx
= uxvx + uyvy − avx.

(5.13)
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Figure 5.3: Penrose diagram (figure 4.4) illustration for <NLR
Ly,2 > calculation, with empty

volume shown in yellow.

Therefore,

<NLR
Ly,2> =

∫
XL

ρ d2x

∫
YR∩J+(x)

ρ d2y e−ρV
LR
Ly (x,y)

= ρ2

∫ b

a

dvy

∫ a

0

duy

∫ uy

0

dux

∫ 0

−∞
dvx e

−ρ(uxvx+uyvy−avx).

(5.14)

Note the upper limit of the ux integral is now uy, which is required to ensure y ∈ J+(x). This
was automatically satisfied in all previous cases.

Solving the integrals one by one gives

<NLR
Ly,2> = ρ

∫ b

a

dvy

∫ a

0

duy

∫ uy

0

dux
e−ρuyvy

a− ux
(5.15)

26



= −ρ
∫ b

a

dvy

∫ a

0

duy e
−ρuyvy ln

(
1− uy

a

)
(5.16)

= −
∫ b

a

dvy
e−ρavy

vy

[
γ + ln(−ρavy) + Γ(0,−ρavy)

]
, (5.17)

where Γ(s, x) is the incomplete gamma function [70]. It is generally true that

Γ(0, x) = −γ − lnx−
∞∑
k=1

(−x)k

kk!
, (5.18)

and

Ei(x) = γ + ln |x|+
∞∑
k=1

xk

kk!
, x 6= 0. (5.19)

Therefore,

Γ(0,−x) = −γ − ln(−x)−
∞∑
k=1

xk

kk!

ln(−x) + Γ(0,−x) = −γ −
∞∑
k=1

xk

kk!

= −Ei(x) + ln |x|.

(5.20)

In the macroscopic regime, Ei(ρavy)� ln |ρavy| > γ. Thus by substituting into equation (5.17)
and dropping non-leading terms,

<NLR
Ly,2>'

∫ b

a

dvy
e−ρavy

vy
Ei(ρavy). (5.21)

Finally, using the asymptotic expansion for Ei(x), equation (5.2), one obtains

<NLR
Ly,2> '

∫ b

a

dvy
1

vy

[
1

ρavy
+O

(
1

(ρavy)2

)]
=

1

ρa2
− 1

ρab
+O

(
1

(ρa2)2

)
−O

(
1

(ρab)2

)
' 1

ρa2
,

(5.22)

to leading order. This tends to 0 in the macroscopic regime as required for locality. Note that
no other non-local contribution gives higher order corrections to the right-right contribution.

5.3 Final Result and Discussion

By combining the right-right contribution for y-links, equation (5.11), with the discussion
and results regarding the non-local corrections with x∈X , equation (5.22), the total expected
number of y-links in 2d is given by

<NLy,2> = 2 <NRR
Ly,2> + <NLR

Ly,2> + ... (5.23)

=
π2

3
− 2 Li2

(
a

b

)
+O

(
1

ρa2

)
(5.24)
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=
π2

3
−O

(
a

b

)
+O

(
1

ρa2

)
, (5.25)

to leading order in corrections. This is both local and satisfies equation (4.8) with k2 = π2/6.
Using the approximate X ↔ Y symmetry from section 4.2.4, one can define an approx-

imately equivalent link, an x-link, which has constraints x∈J−(Σ) and y∈Y . This new link
corresponds to reflecting the empty volume VLy(x, y) in the mirror symmetry axis associated
with the X ↔ Y symmetry. To see this compare figure 5.4 with figure 5.2. The same leading
order result in the macroscopic regime as for y-links is expected by symmetry [15]. Thus there
are two types of link that are viable horizon molecules in 1 + 1D.

Finally, one can define an xy-link, such that x∈J−(Σ) and y∈J+(H). This the strictest
type of link considered as it has the largest empty volume, as seen in figure 5.4. Therefore it
should satisfy the locality conditions, but have a less than or equal k2 value than above. It also
is naturally symmetric, as it constrains x and y to equal extents, which is an appealing feature.
However, we were unable to count these links analytically and thus applied computational
techniques.
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Figure 5.4: Penrose diagram (figure 4.3) showing the empty volume of an x-link (yellow) and
xy-link (yellow and orange).
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Chapter 6

Computationally Counting Links

This chapter presents a general n-dimensional algorithm for computationally counting links.
This is then implemented in Python to count links in 2d and 3d.

6.1 Computationally Finding All Minimal/Maximal Points

First consider an algorithm for finding all the minimal or maximal elements of a causet C
faithfully embedded in a spacetime region R. Let Y be the list of the coordinates of each
sprinkled point yµi , written as yi for shorthand. Note y0

i is the time coordinate of yi.
First, an algorithm for finding the minimal elements:

1. Sort the elements of Y into an ascending time ordered list, YT . YT = {y0, y1, y2, ...},
where y0

i < y0
i+1 ∀i.

2. Append y0 to a list of points minimal in R, Ymin. No yi has a smaller time coordinate
than y0, therefore y0 minimal.

3. Find all points in J+(y0) and remove them, together with y0, from YT . All
points in J+(y0) cannot be minimal in R as each point contains y0 in its past. Also,
all points in J+(y0) are not in the causal past of any of the remaining points. Hence
they may be removed from consideration. Practically, this was implemented using the
ufunc numpy.where [71] to find all sprinkled points satisfying the condition y0

i − y0
0 >√∑n−1

k=1(yki − yk0)2. numpy.where was used instead of an explicit for loop iteration over

the sprinkled points as it is considerably more efficient.

4. If YT is not empty, go to step 2. Else, stop. The first element in the truncated YT
(the new y0) has the lowest time coordinate of all remaining points.

This produces a list of the minimal points in R, Ymin. An analogous algorithm can find all
maximal points in R, the only differences are that a descending time order is applied and
J−(y0) is discarded at each iteration. Moreover, this algorithm is substantially faster than
directly checking the minimality/maximality of every point because, after the time ordering,
numerous points are discarded at each iteration with no extra computation.

6.2 Computational Method

Unlike in analytical calculations where an integral was found for the expected number of links,
the code performs a sprinkling and directly counts links crossing the horizon. It then averages
over Nsp sprinklings.
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Four local link types of the form x∈A and y∈B arise from the discussion in chapter 5:

• L: x∈X and y∈Y

• Ly: x∈X and y∈J+(H)

• Lx: x∈J−(Σ) and y∈Y

• Lxy: x∈J−(Σ) and y∈J+(H)

where x ∈ X and y ∈ Y in all cases. A general algorithm for counting any of these links is:

1. Specify the type of link to be counted.

2. Input the numerical parameters: a, b, ρ and Nsp.

3. Define the spacetime region R to be sprinkled on. See next section for example.

4. Calculate the number of sprinkled points N , where N is taken from a Poisson
distribution of mean ρV . This was implemented using the numpy.random library.

5. Uniformly distribute N points in R. This completes the sprinkling process.

6. Create arrays of all points within A and B. This, again, was implemented using
the equations of the boundaries of these regions with numpy.where to find all sprinkled
points within the boundaries.

7. Find all points maximal in A, Amax, and all points minimal in B, Bmin. See
algorithm in previous section.

8. If counting a link type for which A 6= X : find all points in X , then define
Xmax := Amax ∩ X . Else Xmax := Amax. This is needed to ensure x ∈ X .

9. If counting a link type for which B 6= Y: find all points in Y, then define
Ymin := Bmin ∩ Y. Else Ymin := Bmin. This is needed to ensure y ∈ Y .

10. Find all links between points in Xmax and Ymin. Produce an array of all linked
x-y pairs and count the number of links. To do this, the sprinkled points in J+(x)∩
J−(y) are found for each x-y pair. If there are no points in this region, and x and y are
causally related, then x-y is a link.

11. Repeat steps 4-10 Nsp times. Save the number of links found in each iteration.

12. Compute the average number of links over all of the sprinklings (iterations).
Compute the standard error in the mean.

13. Repeat steps 2-12 for different values of the numerical parameters to plot the
variation of the average number of links. For example a and ρ could be held fixed
whilst varying b in order to produce a plot of the average number of links against b.

Note, steps 8 and 9 above can be amended to count any contribution. For example, for <NLR
Ly >,

replace X → XL in step 8 and Y → YR in step 9.
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6.3 Inaccuracy Due to Numerical Cutoff

Figure 6.1 shows a 1 + 1D example of the above algorithm with a 2L × 2L square for the
sprinkling region, where L =

√
2b and the square is centred at O. Whilst this sprinkling region

covers the entirety of Y , it does not cover the entirety of X , as X is infinite in size. Thus
there is a numerical cutoff on X , which varies with b because L ∼ b. Therefore, increasing b
both increases the size of Y , as it should, but also increases the size of X considered by the
simulation, which is a source of inaccuracy. If links are local this will have negligible effect in
the macroscopic regime, however, for small b, numerical results should be less than analytical
results. This numerical truncation of X will occur regardless of the sprinkling region, as X is
infinitely large.
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Figure 6.1: Numerical cutoff illustrated on a spacetime diagram (figure 4.1). The magenta
square is an example of a region sprinkled on in the simulation and can be seen to fully
encompass Y but not X .

6.4 Test on Previous 1+1D Results

To test the algorithm, the code was setup to calculate the analytical results detailed in the
previous chapter. In all cases, Nsp = 1000.

Firstly the code was made to study <NRR
L,2 > as a function of b. This was calculated in

section 5.1 and was found to be dependent on b according to equation (5.4). The plot in figure
6.2 shows the numerical data, for ρ = 1 and a = 20, overlaid with equation (5.4). There is
good agreement between the data and the analytical result. Note, for low b the data is lower
than the analytical result because of the numerical truncation of X .
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Figure 6.2: Numerical and analytical variation of <NRR
L,2 > with b. Less data points are used

for high b because the time of computation is longer as there are more points to consider.
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Figure 6.3: Variation of <NLy,2> (numerical and analytical) and <NLx,2> (numerical) with b.
Note the agreement in the macroscopic regime, but discrepancy of x-links elsewhere.
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Figure 6.3 shows the computational data for <NLy,2> and <NLx,2>. It can be seen that
<NLy,2> agrees with the analytical result for y-links, equation (5.25), suggesting the non-local
contributions are negligible as argued in section 5.2. Moreover, whilst <NLx,2> is not equal to
<NLy,2> for low b, the two are compatible in the macroscopic regime, as expected by X ↔ Y
symmetry. The reason x-links reach π2/3 faster than y-links is because, unlike Y , X is not
cutoff by the collapsing shell at lightcone coordinate b. Therefore, analytically, x-links should
have a negligible b dependence, however the simulation results show some b dependence due to
the numerical truncation of X .

The agreement of the data with the corresponding analytical results in the macroscopic
limit support the code’s accuracy and its ability to efficiently find O(1) suitably constrained
links out of up to N ∼ ρV ∼ ρb2 = 106 sprinkled points (i.e. 1036 potential pairings).

6.5 Counting xy-links in 1 + 1D

Figure 6.4 shows the variation of <NRR
Lxy,2> with ρ, which can be seen to tend to 0 in the

macroscopic regime. This gives k2 = 0, therefore xy-links cannot be horizon molecules in
1 + 1D.
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Figure 6.4: Numerical variation of <NRR
Lxy,2> with ρ.

6.6 Counting Links in 2 + 1D

Analytical calculations in 2 + 1D are more complicated that in 1 + 1D because of the need
to consider the volume of intersection of higher dimensional lightcones. Whilst success was
made in calculating these volumes [14], using them within equation (3.5) appears analytically
intractable. Thus a computational approach is adopted.
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For the constant θ slice detailed in section 4.2.2, the cubic analogue of the square pictured
in figure 6.1 was used for the sprinkling region. Because they are the most highly constrained,
xy-links provide a lower bound for the expected number of all links considered above, thus they
will be investigated first. Using equation (4.7), the expected number of xy-links must satisfy

<NLxy,3>' k3

√
2πa ρ1/3. (6.1)

This is independent of b, therefore the software was used to plot <NLxy,3> against b. Figure
6.5 shows this plot and it can be seen that, for ρ = 0.01 and a = 20, the average number of
links is unbounded with b up to b = 100. For these parameters, a/b = 0.2 and (ρa3)−1 = 0.01,
which are relatively small compared to the values of <NLxy,3>, suggesting this variation is not
due to correction terms of similar form to those in equation (5.25).

This variation with b suggests that xy-links are non-local to H ∩Σ in 2 + 1D and that they
extend to the shell. This is apparent in figure 6.6 which shows a spacetime plot of the xy-links
found in a sprinkling. Even with xy-links, where y is forced to be close to H and x is forced to
be close to Σ, there are still links far away from H ∩Σ, with some reaching the shell. Moreover,
many links extend outside both H and Σ. This can be understood using figure 6.7. Given any
x maximal in J−(Σ), the locus of the intersection of J+(x) with H is a curve. Any y lying close
to this curve will likely both link to x and be minimal in J+(H). Given the curve extends up
to the shell, it is expected that xy-links can reach arbitrarily close to the shell [16]. Thus all
links are rejected from being horizon molecules in 2 + 1D. Also, given 3 + 1D can be thought
of as a collection of 2 + 1D slices, it is expected the same is true in 3 + 1D.
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Figure 6.5: Numerical variation of <NLxy,3> with b. <NLxy,3> appears unbounded.
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Figure 6.6: Simulation of links in 2 + 1D. All links found by the simulation are plotted in
orange with their corresponding two elements. The red cone represents H, the blue cone Σ,
and the black cone represents the shell. It can be seen that links lie arbitrarily far away from
H ∩ Σ (the intersection of the blue and red cones).

Figure 6.7: The red cone represents H, the blue cone Σ, and the green cone J+(x) for some
arbitrary x. J+(x) and H intersect in a curve, shown in black. In order for y to link to x and
be minimal in J+(H), it must be close to both J+(x) and H, i.e. close to J+(x) ∩H. Because
this intersection is a curve that will extend to the shell (not shown), each x has arbitrarily
many y’s linked to it lying arbitrarily far away from H ∩ Σ. [72]
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Chapter 7

Triplets

There are no other known minimal/maximal constraints capable localising links in 2 + 1D.
Therefore, a natural next step for finding a local molecule is to add an additional element to a
link, forming a triplet.

7.1 Analytically Counting z-triplets in 1 + 1D

There are various ways of adding an element to a link within the vicinity ofH∩Σ. One promising
type of triplet introduced by Marr is known as a z-triplet [16], pictured in figure 7.1. It is defined
such that, as well as x ∈ X and y ∈ Y , there is a point z ∈ J+(H)∩J−(Σ), where x ≺∗ z ≺∗ y.
To satisfy both of these conditions it is required that z ∈ Z := J+(H)∩J−(Σ)∩J+(x)∩J−(y).
Following Marr, we define the z-triplet with constraints x∈X and y∈J+(H), i.e. the same
constraints as for a y-link.

Because y is linked to z, y ∈ J+(z), and because z is a random point in the sprinkling,
this will have the indirect effect of increasing the empty volume since y is forced away from H.
When constraining links earlier, a condition which directly increased the empty volume was
imposed; adding a third atom indirectly has the same effect and therefore can be heuristically
understood to increase the level of locality.

Using equation (3.5), recall the expected number of y-links is

<NLy,n>=

∫
X
ρ dnx

∫
Y∩J+(x)

ρ dny e−ρVLy(x,y), (7.1)

where VLy(x, y) is a volume containing no sprinkled points. In the case of a z-triplets, VLy(x, y)
must contain only one point, z ∈ Z. Therefore to find the expected number of z-triplets
<Nz,n>, a factor of ρdnz must be added to the integrand, together with an integral over Z. So,

<Nz,n>=

∫
X
ρ dnx

∫
Y∩J+(x)

ρ dny

∫
Z
ρ dnz e−ρVLy(x,y), (7.2)

where the integrand is now the probability that VLy(x, y) is empty apart from one point in Z.
Note Z is a function of x and y.

Because VLy(x, y) is independent of z, as z lies within it but has no effect on its shape,
integrating over Z yields

<Nz,n>=

∫
X
ρ dnx

∫
Y∩J+(x)

ρ dny ρVZ(x, y) e−ρVLy(x,y), (7.3)

where VZ(x, y) is the volume of region Z. Note this can be rewritten as
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<Nz,n> =

∫
X
ρ dnx

∫
Y∩J+(x)

ρ dny ρVZ e
−ρVZ e−ρ(VLy−VZ)

=

∫
X
ρ dnx

∫
Y∩J+(x)

ρ dny Po[1; ρVZ ] Po[0; ρ(VLy − VZ)],

(7.4)

showing that the integrand is the probability of there being one point in VZ and none in the
remaining volume VLy − VZ , as wanted.
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Figure 7.1: Penrose diagram (figure 4.4) depicting a z-triplet. The green point is z. The yellow
region is the empty volume. The dark green region is Z.

Because of their additional element, z-triplets are more constrained than y-links, thus regions
that were found to negligibly contribute to y-links will also negligibly contribute here. Therefore
there is no need to check the non-local contributions and it can be assumed that <Nz,2>' 2 <
NRR
z,2 > to leading order, as in equation (4.11). Using equation (7.3), with equation (5.7) for

VLy, one obtains

<NRR
z,2 > = ρ3

∫
XR

d2x

∫
YR
d2y VZ e

−ρVLy(x,y)

= ρ3

∫ b

a

dvy

∫ a

0

duy

∫ a

0

dvx

∫ 0

−∞
dux (a− vx)uy e−ρ[uxvx+uyvy−uxvy ]

= ρ2

∫ b

a

dvy

∫ a

0

duy

∫ a

0

dvx
(a− vx)uy
vy − vx

e−ρuyvy

= ρ2

∫ b

a

dvy

∫ a

0

duy

[
a− a ln

(
1− a

vy

)
+ vy ln

(
1− a

vy

)]
uye

−ρuyvy
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=

∫ b

a

dvy
1

v2
y

[
a− a ln

(
1− a

vy

)
+ vy ln

(
1− a

vy

)] [
1− (1 + ρavy)e

−ρavy] .
The second square brackets contains an exponentially small contribution in the macroscopic
regime since (1 + ρavy)e

−ρavy � 1, which can be dropped to determine the leading order
contribution. Thus,

<NRR
z,2 > '

∫ b

a

dvy
1

v2
y

[
a− a ln

(
1− a

vy

)
+ vy ln

(
1− a

vy

)]
= a

∫ b

a

dvy
1

v2
y

− a
∫ b

a

dvy
1

v2
y

ln

(
1− a

vy

)
+

∫ b

a

dvy
1

vy
ln

(
1− a

vy

)
=

[
− a

vy

]b
a

−
[
a

vy
+

(
1− a

vy

)
ln

(
1− a

vy

)]b
a

+

[
Li2

(
a

vy

)]b
a

= −
[
2
a

vy
+

(
1− a

vy

)
ln

(
1− a

vy

)]b
a

+

[
Li2

(
a

vy

)]b
a

.

(7.5)

Using the fact
lim
x→1

(1− x) ln(1− x) = 0,

the limits can be evaluated to give

<NRR
z,2 > ' −2

a

b
−
(

1− a

b

)
ln
(

1− a

b

)
+ 2 + Li2

(a
b

)
− Li2(1)

= 2− π2

6
− 2

a

b
−
(

1− a

b

)
ln
(

1− a

b

)
+ Li2

(a
b

)
.

(7.6)

In order to find the order of the leading correction, use the series expansion for the logarithm
and dilogarithm [69] as follows

<NRR
z,2 > ' 2− π2

6
− 2

a

b
+
(

1− a

b

) ∞∑
n=1

1

n

(a
b

)n
+
∞∑
n=1

1

n2

(a
b

)n
= 2− π2

6
− 2

a

b
+
∞∑
n=1

1

n

(a
b

)n
−
∞∑
n=1

1

n

(a
b

)n+1

+
∞∑
n=1

1

n2

(a
b

)n
= 2− π2

6
− 2

a

b
+
a

b
+
∞∑
n=2

1

n

(a
b

)n
−
∞∑
n=2

1

n− 1

(a
b

)n
+
a

b
+
∞∑
n=2

1

n2

(a
b

)n
= 2− π2

6
+
∞∑
n=2

[
1

n
− 1

n− 1
+

1

n2

](a
b

)n
= 2− π2

6
−
∞∑
n=2

1

n2(n− 1)

(a
b

)n
= 2− π2

6
−O

((a
b

)2
)

<NZ,2> ' 4− π2

3
−O

((a
b

)2
)
.

(7.7)

This is lower than the value found for links, equation (5.25), as expected as the z-triplet is more
constrained. Moreover, the leading order correction is quadratic in a/b, unlike for links where
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it is linear, suggesting a higher level of locality. The result is of order unity and satisfies the
condition of equation (4.8) with k2 = 2−π2/6. Note this result agrees with [16]. Note also there
are expected to be correction terms that depend on a, b and ρ due to non-local contributions.

7.2 Computationally Counting z-triplets

A computational algorithm was employed to calculate the expected number of z-triplets in
2 + 1D.

7.2.1 Computational Method

The first steps are identical to steps 1-5 in the link counting algorithm in section 6.2. From
step 6 onwards the algorithm for z-triplets is as follows:

6. Find all sprinkled points that are minimal in Y. Append them to Ymin.

7. For every y ∈ Ymin count the number of points in J+(H)∩J−(Σ)∩J−(y). If there
is only one point, add it to Z and add y to Y , else discard that y. This gives a
list of z-y pairs where z ≺∗ y and z ∈ Z.

8. For each (y, z) pair in Y and Z respectively, find all the points maximal in
J−(z) ∩ X . These points are the points x, such that x ≺∗ z. Make a list of all (y, z, x)
triplets.

9. Check J+(x) ∩ J−(y) ∩ J−(H) ∩ J+(Σ) is empty for each triplet. If it is, append
the triplet to a list of z-triplets and count them. The final requirement to be
satisfied is that, apart from z, J+(x)∩J−(y) is empty. However, there is no need to check
the entirety of J+(x) ∩ J−(y) as the previous steps ensure emptiness elsewhere and it is
computationally faster to search a smaller region of spacetime.

10. Apply the z-triplet analogue of steps 11-13 for links.

This algorithm uses the fact that if two points are linked, e.g. x ≺∗ z, then x is maximal
in J−(z). Finding maximal/minimal points is substantially faster than checking if the causal
interval, or some other region of spacetime, for each pair of points is empty. In fact, step 9 is
the bottleneck of this algorithm, therefore minimality/maximality considerations are employed
beforehand to reduce the number of points considered in this step.

7.2.2 1 + 1D Test

Figure 7.2 shows a plot of <Nz,2> against b using the square sprinkling region pictured in figure
6.1 with ρ = 1, a = 10 and Nsp = 1000. It is overlaid with the analytical result for <Nz,2>, using
<Nz,2>' 2 <NRR

z,2 > (as z-triplets are local) and equation (7.6) for the right-right contribution.
There is good agreement between the numerical and analytical results, providing support for
the algorithm’s accuracy.
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Figure 7.2: Numerical and analytical variation of <Nz,2> with b.

7.2.3 2 + 1D Results

Equation (4.7) requires

<Nz,3>= k3

√
2πa ρ1/3 (7.8)

to be satisfied in the macroscopic regime in order for z-triplets to be viable horizon molecules.
Using a cubic sprinkling region, as for links, the simulation was first run to vary ρ between

10−3 and 10−1 for a = 20 and b = 150, as in figure 7.3. The values of the parameters ensure
correspondence to the macroscopic regime, however it is expected that there will be correction
terms. Nsp was varied with ρ from 1000 to 100 in order to ensure reasonable computation time
for larger sprinklings. In order to test the satisfaction of equation (7.8), the following fit was
performed using a least squares method [73,74]:

<Nz,3> (a, ρ; k3, c) = k3

√
2πa ρ1/3 + c, (7.9)

where a constant c is added to account for correction terms. The fit is shown in figure 7.3 and

gives an estimate of k̂ρ3 = 0.28±0.02, which is of order unity as required. Note that ĉ = 1.8±0.2,
suggesting there are correction terms, although, ĉ/ <Nz,3>∼ O(0.1) throughout the plot, which
is relatively small. The reduced chi-squared is χ2

ν = 1.4 (p-value=0.2), suggesting there is no
reason to reject z-triplets as horizon molecules to a reasonable significance.

In actuality the corrections are expected to be functions of a, b and ρ. By dimensional
analysis and comparison with 1 + 1D links, the leading order corrections are expected to be
of order a/b and 1/ρa3. To investigate these corrections, the simulation was made to run over
a range of a from 20 to 70 and over the same range of ρ as above, producing a 2 dimensional
dataset as pictured in figure 7.4. A more general fit of

<Nz,3> (a, ρ; k3, n, c, d) = k3

√
2πa ρn + c

a

b
+ d

1

ρa3
(7.10)
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is used, which also takes the exponent of ρ as a free parameter n. This dataset yields n̂ =
0.28 ± 0.05, which agrees with 1/3 within error, as required. Also this gives an estimate of
k̂3 = 0.26 ± 0.02, which is consistent with k̂ρ3 . However, the reduced chi-squared is χ2

ν = 4.14,
which for the 62 degrees of freedom in this fit gives an extremely small p-value, suggesting a
poor fit. This is likely due to the addition of extra parameters and guessing correction terms
based on 1 + 1D links.

Figure 7.3: Numerical variation of <Nz,3> with ρ. Equation (7.9) is fitted. Note the larger
errors at larger ρ, because lower Nsp was used, increasing the standard error in the mean.

Figure 7.4: Numerical variation of <Nz,3> with ρ and a, for b = 150.

To investigate the locality of z-triplets, consider figure 7.5, where it can be seen that they
are local to H ∩ Σ as they do not extend arbitrarily far along H or Σ. Furthermore, the links
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between x, z and y no longer cross from cone to cone without crossing H ∩ Σ, as they did for
links in figure 6.6. This is because z is required to lie in the future of H and the past of Σ,
i.e. in the region enclosed by both the blue and red cones, as well as being linked to x and y.
These conditions enforce x and y to be causally connected via a point inside both the H and Σ
cones, thus making the z-triplet local to H ∩ Σ. Altogether, these results show that z-triplets
are viable horizon molecules.

Finally, although equation (2.8) is strictly for 4d, one can heuristically consider the 3d
analogue by changing the exponent on the left-hand side from 2 to 1 (as areas l2 become
lengths l). Therefore, assuming the factor of SBH is also 1/4 in 3d, the fundamental length
scale can be estimated as follows

l̂f ≈ 4k̂ρ3lP

= 4× (0.28± 0.02)× 1.616× 10−35m

= (1.8± 0.1)× 10−35m,

where k̂ρ3 is used as it arises from the better fit. This illustrates how the value of lf can be
determined from the proposal.

Figure 7.5: Plot of z-triplets found in a 2 + 1D sprinkling simulation (zoomed-in on right).
Links are orange, x’s are blue points, y’s are red and z’s green. The red cone represents H, the
blue cone Σ, and the black cone represents the shell. It can be seen that z-triplets are local to
H ∩ Σ (the intersection of the blue and red cones).
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Chapter 8

Conclusion

This report has counted links and z-triplets in both 1 + 1D and 2 + 1D. Having found plain
links are non-local in 1+1D, it was shown that by applying appropriate minimality/maximality
constraints one can obtain local links. However, computational analysis of 2 + 1D showed that
even the most constrained links (xy-links) are non-local, therefore ruling them out as horizon
molecules. A second method of enforcing locality, adding a third atom to the molecule to create
a z-triplet, was then discussed and shown to produce viable horizon molecules in both 1 + 1D
and 2 + 1D. The success of z-triplets provides promise for Sorkin’s proposal moving forward.

In terms of future work, the code could be run on a better computer in order to consider
larger causets, in turn extending further into the macroscopic regime and providing more accu-
rate results. The largest number of sprinkled points that could be stored on the computer used
in this work was of order 1 million, which limited the runs above. Larger causet simulations
could also make 3 + 1D computations feasible.
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Figure 8.1: Penrose diagram (figure 4.3) illustrating a diamond molecule.
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The code could also be adjusted to consider different types of z-triplet, with different min-
imality/maximality constraints on x and y. Moreover, different types of molecules could be
investigated. One molecule of particular interest is the diamond, pictured in figure 8.1. This is a
4-atom molecule which looks like pair creation at x, with one atom moving into the horizon (z)
and one staying outside (w), with a ‘witness’ at y observing the entanglement. This is akin to
Hawking radiation [75], a seemingly alternative explanation for black hole entropy, however it is
possible that diamond molecules are the quantum gravitational analogue of Hawking radiation.
Diamonds have already been shown to satisfy the proposal analytically in 1 + 1D [76].

Finally, the computational method could be extended to study horizons in more complex
geometries. In this work only the flat spacetime within a collapsing shell was considered,
however one could also study other black holes, such as a static Schwarzschild black hole
formed after the collapse, or a BTZ black hole [77], both of which seem analytically intractable.

The software developed in this work lays the framework for the study of many other
molecules and spacetime geometries. This report has only scratched the surface of its potential
capabilities.
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